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Abstract

An analytical model for solving the problem of frequency response of bodies with combined convective and
radiative heat transfer is presented. The issue of two con¯icting types of conclusions existing in the literature
regarding the e�ect of radiative heat transfer on the frequency response of bodies has been addressed and explained.

It is shown how both types of conclusions are possible depending upon the type of assumptions involved in the
solution of the problem or the scope and limitations of experimental observations. # 1999 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

The problem of radiative heat transfer combined

with conductive and convective heat transfer has been

the subject of study for years. After Heisler [1] solved

the simple transient convective heat transfer problem,

the ®rst paper on the additional e�ects of radiative

heat transfer was reported by Scadron and

Warshawsky [2] in 1952. Since then there have been

numerous papers [3±11] on the topic using analytical,

numerical and/or experimental techniques to ascertain

the e�ects of radiative heat transfer on the temperature

frequency response of various devices. Scadron and

Warshawsky [2] followed a typical engineering

approach for their speci®c problem of ®nding the time

constant for very hot ®ne wire thermocouples. They

decided to linearize the boundary condition by making

the assumption that the temperature of the ®ne wire

thermocouple was close to the gas temperature and

thus the thermocouple time constant was modi®ed by

a factor of {1+(4esT 3
g)/h }. This is like deciding to use

a linearized radiative heat transfer coe�cient and com-

bine it with the convective heat transfer coe�cient, as

suggested by Eckert and Drake [3] and by SchoÈ del and

Grigull [4]. While their logic and conclusions in the

paper were correct given the assumption that the wire

temperature was very near the gas temperature, this is

generally not true.

Ayers [5] used a ®nite di�erence technique to make

general charts. He divided a ®ne wire thermocouple in

21 discrete elements and showed the results for the

temperature history in the wire as a function of ®ve
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non-dimensional variables, non-dimensionalized radi-

ation intensity being one of them. His charts showed

that the low frequency response was unity and that the

time constant was a�ected by radiation through a T 3

term. Sucec and Kumar [6] used a ®nite di�erence sol-

ution to make general charts which showed a low fre-

quency response of unity and that the time constant

was a�ected by radiation. He compared his `exact' nu-

merical results to analytical results using a linearized

radiation term in the boundary condition and the

results did not agree. He concluded that using the

Heisler charts with a combined `convective±radiative'

heat transfer coe�cient can produce serious errors.

Janata [7] derived analytical results by linearizing the

boundary condition by using an equilibrium tempera-

ture, Te, at which there is no `radiative±convective'

heat ¯ux. He concluded that the low frequency re-

sponse was unity and that the time constant varied as

(1+KT 3
e). Elmore et al. [8] used a ®nite di�erence tech-

nique to determine the frequency response of a ther-

mocouple. They varied the strength of the radiative

term by setting the emissivity to either zero or one

over the range of frequencies, 20, 100 and 1000 Hz. It

may be noted that all these frequencies are above the

frequency (about 1 Hz) where attenuation of the re-

sponse due to thermal lag occurs. No results were

shown for the cases of asymptotically low frequencies

and the conclusion was that radiative heat transfer had

a minimal e�ect on the time constant. Shaibi et al. [9]

reported from their experimental work that the time

constant varies in an inverse reciprocal relationship

with T 3
b. They measured the temperature of a ®ne wire

thermocouple as the current through it was modulated.

As the frequency of the current oscillations was

increased, the magnitude of the temperature oscil-

lations of the thermocouple was normalized with

respect to the low frequency magnitude of the tempera-

ture oscillations. It was shown that the e�ect of radi-

ation is to decrease the thermocouple time constant.

Malcorps [10,11] published two papers on his work in

the area of determining the frequency response of

radiative heat ¯ux sensors used to measure the solar

radiation ¯ux. He showed that the ability of the sensor

to follow changes in gas temperature should decrease

with increasing probe temperature and the response at

high frequencies should vary as it does in the linear

case; that is, the time constant is una�ected by the

presence of radiative heat transfer. In other words, the

frequency response for asymptotically low frequencies

is a�ected by radiation but the time constant is not.

This is a signi®cantly di�erent result from other

authors.

With all of this work it is interesting to note that,

with the only exception of Malcorps [10,11] work, the

two types of conclusions in the literature are at odds

with each other. The ®rst type of conclusion is that the

e�ect of radiative heat transfer has no e�ect on the fre-

quency response. The second type of conclusion is that

the radiative time constant is a�ected by radiation

through a T 3 term. It would seem from the literature

that on the issue of the e�ect of radiation the answer

could either be that it is apparent in the time constant

Nomenclature

A surface area
cv speci®c heat at constant volume
err multiplicative error in evaluation of Bessel

functions
h convective heat transfer coe�cient
I imaginary part of the response equation

i ÿp 1
k thermal conductivity
K an analytically derived constant

m mass
r radius
R real part of the response equation
t time

T temperature.

Greek symbols
a thermal di�usivity/phase lag

e emissivity
r normalized angular frequency

s Stefan±Boltzman constant
o0 fundamental angular frequency (rad/s).

Subscripts

b convectively and radiatively heated body
c combined convective and radiative heat

transfer coe�cient

e equilibrium
g gas
j frequency index
k frequency index/index of term in Taylor

expansion
m frequency index
n frequency index

q frequency index
r radiative heat transfer coe�cient
s evaluated at the surface or of the surface

w wall
0 average.
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or it could be that it has no e�ect. The analytical and

numerical work in this paper is aimed at explaining the
fact that both types of conclusions are possible
depending on the type of assumptions taken in the

analysis or the scope of the experiment performed. It
successfully explains the discrepancy existing in the lit-
erature and makes neither type of conclusion. The
results presented here are in agreement with the work

on Malcorps [10,11] who has reported similar con-
clusions.

2. Existing analytical models

Most of the analytical methods presented in the lit-
erature have followed the approach of determining the
sensor's response to changes in gas temperature, given

a variation in gaseous temperature. The physical
arrangement of typical cases examined in the literature
is shown in Fig. 1. Assuming a view factor of unity

and neglecting gas phase radiative heat transfer, mod-
eling of the sensing element as a lumped mass leads to
solving the di�erential equation

h�Tg�t� ÿ Tb�t�� � mcv

A

dTb�t�
dt
� es�T 4

w ÿ T 4
b�t�� �1�

This equation represents an implicit dependence of the

body's temperature on gas temperature. If one assumes
the gas temperature as the known boundary condition,
an a priori linearization of the radiation terms is

required such that the problem can be solved using
analytical techniques. In the literature there are three
primary methods for linearizing Eq. (1). The ®rst

method, as Scadron and Warshawsky [2] proposed, is
to assume that the sensor temperature follows the gas
temperature, [Tg(t )ÿTg(t )]/Tg(t ) 1 1. The second

method is to assume that the gas temperature and the
body's temperature are close to the wall temperature,

i.e. Tb(t ) 1 Tw(t ) 1 Tb(t ), as Sbaibi et al. [9] pro-
posed. The third method proposed by Janata [7] is to
assume that the radiative e�ects are best represented

by an equilibrium temperature, Te, at which radiative
and convective heat transfer balance. By using any of
these assumptions Eq. (1) can be linearized as

hc�Tg�t� ÿ Tb�t�� � mcv

A

dTb�t�
dt

�2�

resulting in a modi®ed heat transfer coe�cient (hc)
where

hc � �h� 4esT 3
b� or �h� 4esT 3

g� or �h� 4esT 3
e�

depending on the assumption used. The transfer func-
tion is then found to be

Tb

Tg

� 1������������������������������
1�

�
mcv

hcA
o
�2

s �3�

with a phase lag of

ag ÿ ab � tanÿ1
�
mcv

hcA
o
�

�4�

This modi®cation of the heat transfer coe�cient then

leads to the conclusion that the e�ect of radiation is to
increase the ability of the sensor to follow changes in
gas temperature. That is, an increase in the convective

heat transfer coe�cient or an increase in the radiative
term results in an improved temperature response of
the body in the ¯ow.

3. Proposed solution model

The general analytical method validated in this

paper begins with stating the boundary condition of
the body to be given a priori. This is the central dis-
tinction of the work presented in this paper from the

other work reported in the literature. By using the sur-
face temperature of the body as the known boundary
condition the gas temperature becomes an explicit
function of the body temperature. The assumption that

the temperature of the body is the given variable leads
to a result that explains all the di�erences in the litera-
ture and agrees with the earlier reported analytical as

well as numerical results. Thus in this paper, it is not
the assumptions of previous work that are called into
question but it is intended to explain when it is better

to linearize the radiation terms leading to the maxi-
mum applicability of the solution. As it will be shown
by delaying the linearization of the radiation terms

Fig. 1. Typical temperature sensor to be modeled as a lumped

mass.
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towards the end of the derivation, the form of the
equations is slightly di�erent leading to a markedly

di�erent result.
For the variation in the body's surface temperature

any physically realistic function can be chosen as long

as it is a periodic and bounded piece-wise di�erential
function [12]. This makes a Fourier series represen-
tation of the boundary condition possible. Then using

Fourier's heat conduction equation, the equation
describing the temperature ¯uctuations inside the body
is derived. Once both the characteristics of the tem-

perature at the surface and the variations in the wall
temperature are known, the result is substituted into
the non-linear boundary condition yielding an explicit
non-linear equation. If one subtracts out the steady

state solution then a non-linear equation for the
unsteady heat transfer is left. By assuming that the
¯uctuations in temperatures of the body and the wall

are smaller than their respective average temperatures,
non-linear higher-order terms can be neglected. The
problem is then easily solved for the ratio of the gas

temperature ¯uctuations to the body surface tempera-
ture ¯uctuations (i.e. for the frequency response). It
may be noted that this method is general in the sense

that, as long as the form of the temperature ¯uctu-
ations inside the body can be solved and a boundary
condition can be written, the only assumption to be
made is that the body's temperature ¯uctuations are

small relative to its average temperature. As is shown
in subsequent sections, this is true regardless of
whether the non-linear radiation terms are dominant

or not.

4. Example cases

4.1. Constant wall temperature (Tw(t )=Tw0) and

lumped mass model

First a function describing the surface temperature

of the body is taken. For the purpose of general appli-
cability a Fourier function is chosen. Any bounded
piecewise di�erential temperature ¯uctuation of the el-
ement over a ®nite time can be described by [12].

Tb�t� � Tb0 �
X1
q�1

Tbq ei�qo 0t�abq� �5�

This is a Fourier series in magnitude and phase form.
Tbq is a real number and the purpose of abq is to force

the coe�cients of the complex terms to be real and to
account for the phase di�erence between the tempera-
tures of the body and the gas. Phase of the gas tem-

perature ¯uctuations are referenced to 0. Assuming
that the Biot number is small (<0.1), the object can be
modeled as a lumped mass [13]. Therefore, assuming

no gas phase radiation and a view factor of 1 (see Fig.
1), the governing di�erential equation is

Tg�t� � Tb�t� � mcv

hA

dTb

dt
ÿ es

h
�T 4

w ÿ T 4
b�t�� �6�

Individual terms of the Fourier series being orthog-
onal, the linear terms are separable. The radiative

term, however, is not linear and solutions for each in-
dividual frequency cannot be found separately.
Therefore temperature ¯uctuations at one frequency

can a�ect temperature ¯uctuations at other frequen-
cies. To examine the coupling of the frequencies from
Eq. (5) the fourth power of Tb(t ) is expressed as

T 4
b�t� �T 4

b0 � 4T 3
b0

X1
j�1

Tbj ei� jo 0t�abj �

� 6T 2
b0

 X1
j�1

Tbj ei� jo 0t�abj �
! X1

k�1
Tbk ei�ko 0t�abk�

!

� 4Tb0

 X1
j�1

Tbj ei� jo 0t�abj �
! X1

k�1
Tbk ei�ko 0t�abk�

!

�
 X1

m�1
Tbm ei�mo 0t�abm�

!
�
 X1

j�1
Tbj ei� jo 0t�abj �

!

�
 X1

k�1
Tbk ei�ko 0t�abk�

! X1
m�1

Tm ei�mo 0t�abm�
!

�
 X1

n�1
Tbn ei�no 0t�abn�

!
�7�

Multiplying the summations through, Eq. (7) becomes

T 4
b�t� � T 4

b0 � 4T 3
b0

X1
j�1

Tbj ei� jo 0t�abj �

� 6T 2
b0

X1
j�1

X1
k�1

TbjTbk ei�� j�k�o 0t�abj�abk�

� 4Tb0

X1
j�1

X1
k�1

X1
m�1

TbjTbkTbm

� ei�� j�k�m�o 0t�abj�abk�abm�

�
X1
j�1

X1
k�1

X1
m�1

X1
n�1

TbjTbkTbmTbn

� ei�� j�k�m�n�o 0t�abj�abk�abm�abn� �8�

Substitution of Eq. (8) into the boundary condition
[Eq. (6)] yields
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Tg�t� � Tb0 �
X1
q�1

Tbq ei�qo 0t�abq�

� mcv

hA

X1
q�1

Tbqiqo 0 ei�qo 0t�abq�

� es
h

"
T 4

b0 � 4T 3
b0

X1
j�1

Tbj ei� jo 0t�abj �

� 6T 2
b0

X1
j�1

X1
k�1

TbjTbk ei�� j�k�o 0t�abj�abk�

� 4Tb0

X1
j�1

X1
k�1

X1
m�1

TbjTbkTbm

� ei�� j�k�m�o 0t�abj�abk�abk�abm�

�
X1
j�1

X1
k�1

X1
m�1

X1
n�1

TbjTbkTbmTbn

� ei�� j�k�m�n�o 0t�abj�abk�abm�abn� ÿ T 4
w0

#
�9�

If the amplitude of the ¯uctuating terms is set to 0, the

constant terms can be seen to be

Tg0 � Tb0 � es
h
�T 4

b0 ÿ T 4
w0� �10�

Subtracting out the constant terms, the result is

X1
q�1

Tgq ei�qo 0t�agq�

�
X1
q�1

Tbq ei�qo 0t�abq� � mcv

hA

X1
q�1

iqo 0Tbq ei�qo 0t�abq�

� es
h

"
4T 3

b0

X1
j�1

Tbj ei� jo 0t�abj � � 6T 2
b0

X1
j�1

X1
k�1

TbjTbk

� ei�� j�k�o 0t�abj�abk� � 4Tb0

X1
j�1

X1
k�1

X1
m�1

TbjTbkTbm

� ei�� j�k�m�o 0t�abj�abk�abm�

�
X1
j�1

X1
k�1

X1
m�1

X1
n�1

TbjTbkTbmTbn

� ei�� j�k�m�n�o 0t�a rmbj�abk�abm�abn�
#

�11�

To investigate the e�ect of the radiative term on the
frequency response, a general single frequency is exam-

ined. By taking this single frequency to be the qth one,
and accordingly setting the frequency index in all the
terms to q, Eq. (11) becomes

Tgq ei�qo 0t�agq� �Tbq ei�qo 0t�abq� � mcv

hA
Tbqiqo 0 ei�qo 0t�abq�

� es
h

244T 3
b0Tbq ei�qo 0t�abq�

� 6T 2
b0

Xk<q

k�1
TbkTb�qÿk� ei�qo 0t�abq�ab�kÿq��

� 4Tb0

Xk<qÿ1

k�1

Xm<qÿkÿ1

m�1
TbkTbmTb�qÿkÿm�

� ei�qo 0t�abk�abm�ab�qÿkÿm� �

�
Xk<qÿ2

k�1

Xm<qÿkÿ2

m�1

Xn<qÿkÿmÿ2

n�1
� TbkTbmTbnTb�qÿkÿmÿn�

� ei�qo 0t�abk�abm�ab�qÿkÿmÿn��

35 �12�

This shows that the gas phase temperature ¯uctuations

are not only determined by the ¯uctuations of the tem-
perature sensor at the frequency qo0, but are also
a�ected by the ¯uctuations at frequency components
less than qo0. By examining the last three terms in Eq.

(12), it can be seen how the individual lower frequency
temperature ¯uctuations a�ect the ¯uctuation at qo0

by interacting with other lower frequency temperature

¯uctuations. This e�ect of frequency harmonics is com-
monly seen in nonlinear systems but usually it is not
possible to write out their e�ects as in Eq. (12). It is

possible in this case because the sensor is a passive el-
ement in the system. If the temperature of the sensor
were to feed back into the gas temperature, then it

would not be possible to explicitly write out the e�ect
of each frequency component.
If Eq. (12) is divided out by the varying term,

ei�qo 0t�, the amplitude of each term is given by

Tgq ei�agq� � Tbq ei�abq� � i
mcv

hA
Tbqqo 0 ei�abq� � es

h

244T 3
b0Tbq

� ei�abq� � 6T 2
b0

Xk<q

k�1
TbkTb�qÿk� ei�abq�ab�kÿq��

� 4Tb0

Xk<qÿ1

k�1

Xm<qÿkÿ1

m�1
TbkTbmTb�qÿkÿm�

� ei�abk�abm�ab�qÿkÿm� �

�
Xk<qÿ2

k�1

Xm<qÿkÿ2

m�1

Xn<qÿkÿmÿ2

n�1

� TbkTbmTbnTb�qÿkÿmÿn� ei�abk�abm�ab�qÿkÿmÿn��

35
�13�
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To obtain the transfer function, de®ned as the ratio of
the ¯uctuations of the lumped mass temperature to the

¯uctuations in gas temperature, an approximation is to
be made. Assuming that the coherent sum of the ¯uc-
tuating terms are much smaller than the mean tem-

perature, it is apparent that

4T 3
b0Tbq ei�abq� � 6T 2

b0

Xk<q

k�1
TbkTb�qÿk� ei�abq�ab�kÿq��

� 4Tb0

Xk<qÿ1

k�1

Xm<qÿkÿ1

m�1
TbkTbmTb�qÿkÿm�

� ei�abk�abm�ab�qÿkÿm�� �
Xk<qÿ2

k�1

Xm<qÿkÿ2

m�1

Xn<qÿkÿmÿ2

n�1
� TbkTbmTbnTb�qÿkÿmÿn� ei�abk�abm�abn�ab�qÿkÿmÿn�� �14�

Thus Eq. (13) can be simpli®ed to

Tgq ei�agq� � Tbq ei�abq� � i
mcv

hA
Tbqqo 0

ei�abq� �
�
es
h
4T 3

b0Tbq ei�abq�
� �15�

Eq. (15) is valid for all frequency components less than
equal to qo0. Thus, even if the approximation shown
in Eq. (14) is not valid for (q+ 1)o0, that frequency
component does not a�ect lower-order frequency com-

ponents and the approximation is still valid for the fre-
quency components less than (q+ 1)o0.
From Eq. (15) the frequency response, i.e. ratio of

¯uctuations in the gas temperature to those of the
lumped mass, is

Tbq

Tgq
� 1���������������������������������������������������������������

1�
�
4es
h

T 3
b0

�2

�
�
mcv

hA
qo 0

�2
s �16�

with the gas phase leading the lumped mass by

agq ÿ abq � tanÿ1

0BB@
mcv

hA
qo 0

1� 4es
h

T 3
b0

1CCA �17�

Thus we have the transfer function for a lumped mass
in a stream with combined radiative and convective

heat transfer.
If it is required to normalize the response such that

it becomes unity at asymptotically low frequencies, it is

simple to divide the frequency response by the fre-
quency response in the limit of low frequencies such
that the frequency response is

Tbq

Tgq
� 1��������������������������������������������

1�

0BB@
mcv

hA
4es
h

T 3
b0

qo 0

1CCA
2

vuuuuut
�18�

It may be noted that Eq. (18) is identical to the theor-
etical result of Sbaibi et al. [9].

4.2. Varying wall temperature and lumped mass model

In general the wall temperature can be a function of
time. Thus, the equation governing the heat transfer to
a lumped mass becomes

Tg�t� � Tb�t� � mcv

h

dTb

dt
ÿ es

h
�T 4

w�t� ÿ T 4
b�t�� �19�

Over a ®nite time any piecewise di�erentiable tempera-
ture ¯uctuation of the lumped mass can be described

by a Fourier series as in Eq. (5).

Tw�t� � Tw0 �
Xq�1
q�1

Twq ei�qo 0t�awq� �20�

Using a similar approach as stated in Eq. (14), if the

coherent sum of the wall temperature oscillations are
small compared to the mean wall temperature, it can
be shown that

Tw0 �
 Xq�1

q�1
Twq ei�qo 0t�

!4

1T 4
w0 � 4T 3

w0

Xq�1
q�1

Twq

ei�qo 0t�awq�

�21�

Substitution of this into Eq. (19) results in

Tgq ei�agq� � Tbq ei�abq� � i
mcv

hA
Tbqqo 0

ei�abq� � es
h
�4T 3

b0Tbq ei�abq� ÿ 4T 3
w0Twq ei�awq��

�22�

which yields the transfer function

Tbq

Tgq
� 1�����������������

R2 � I 2
p �23�

with the gas phase leading the lumped mass by

agq ÿ abq �

tanÿ1

0BBB@
mcv

hA
qo 0 � 4es

h
T 3

w0

Twq

Tbq
sin�awq ÿ abq�

1� 4es
h

�
T 3

b0

Twq

Tbq
cos�awq ÿ abq�

�
1CCCA

�24�
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where

R � 1� 4es
h

�
T 3

b0 ÿ T 3
w0

Twq

Tbq
cos�awq ÿ abq�

�
and

I � mcv

hA
qo 0 � 4es

h
T 3

w0

Twq

Tbq
sin�awq ÿ abq�

Thus, we have the solution for the transfer function of
a lumped mass with convective and radiative heat
transfer assuming that the temperature oscillations of

the lumped mass and that of the walls are much
smaller than their respective mean temperatures. This
assumption will be examined while discussing some of

the results later.
If the radiation from the object and the wall are in

phase (awq=abq) and the magnitude of the transient
terms are equal (T 3

b0Tbq=T 3
w0Twq), then Eq. (23) and

(24) would reduce, respectively, to

Tbq

Tgq
� 1����������������������������������

1�
�
mcv

hA
qo 0

�2
s �25�

and

agq ÿ abq � tanÿ1
�
mcv

hA
qo 0

�
�26�

4.3. Varying wall temperature and cylindrical mass

model

Given that any cylindrical surface temperature, that

can be expressed as a bounded piecewise di�erential
temperature ¯uctuation over a ®nite time, can be
expressed by

Tb�rs, t� � Tb0 �
Xq�1
q�1

Tbq ei�qo 0t�abq� �27�

The governing di�erential equation for this case will
be

a

�
@ 2Tb

@r2
� 1

r

@Tb

@r

�
� @Tb

@ t
�28�

subject to the boundary condition

h�Tg�t� ÿ Tb�rs, t�� � es�T 4
w�t� ÿ T 4

b�rs,

t�� � krTb�rs, t�
�29�

Assuming that the temperature ¯uctuations over an in-

®nite time can be written as the product of two func-
tionsÐone of position only and the other of time

alone, one arrives at

rTb�rs, t� �
Xq�1
q�1

����������
qo 0

2a

r
�f1�rqs� � if2�rqs��Tbq ei�qo 0t�abq�

where
Substituting this result into Eq. (29) with approxi-

mations for the radiative terms similar to Eq. (14), and
subtracting out the mean temperature terms, one
arrives at

Tgq ei�agq� � Tbq

ei�abq� � k

h

�������������������������������������������������
qo 0

2a
�f1�rqs� � if2�rqs��

r
Tbq

ei�abq� � es
h
�4T 3

b0Tbq ei�abq� ÿ 4T 3
w0Twq ei�awq��

�31�

which results in the transfer function

Tbq

Tgq
� 1�����������������

R2 � I 2
p �32�

where

rqs �
����������
qo 0

a

r
rs

f1�rqs� �
ber0�rqs�ber1�rqs� � ber0�rqs�bei1�rqs� ÿ bei0�rqs�ber1�rqs� � bei0�rqs�bei1�rqs�

ber20�rqs� � bei20�rqs�
and

f2�rqs� �
ÿber0�rqs�ber1�rqs� � ber0�rqs�bei1�rqs� ÿ bei0�rqs�ber1�rqs� � bei0�rqs�bei1�rqs�

ber20�rqs� � bei20�rqs�
�30�
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R � 1� 4es
h

�
T 3

b0 ÿ T 3
w0

Twq

Tbq

cos�awq ÿ abq�
�
� k

h

������������������������
qo 0

2a
f1�rqs�

r
and

I � 4es
h

T 3
w0

Twq

Tbq
sin�awq ÿ abq� � k

h

������������������������
qo 0

2a
f2�rqs�

r
with the gas phase leading the lumped mass by

�agq ÿ abq� � tanÿ1

0BBB@
4es
h

T 3
w0

Twq

Tbq
sin�awq ÿ abq� � k

h

������������������������
qo 0

2a
f2�rqs�

r
1� 4es

h

�
T 3

b0 ÿ T 3
w0

Twq

Tbq
cos�awq ÿ abq�

�
� k

h

������������������������
qo 0

2a
f1�rqs�

r
1CCCA �33�

It may be noted that for a large non-dimensional
radius, rqs41, Eqs. (32) and (33) reduce identically

to those presented by Malcorps for planar 1-D heat
¯ux meters.

5. Numerical evaluation of the response of a lumped

mass

The numerical results for the lumped mass were

found by solving Eq. (1) for the gas temperature as a
function of the lumped mass temperature and the wall
temperature. The resulting time varying gas tempera-

ture was found by substituting an equation with an
average term and a single sinusoidal term for the time
varying lumped mass temperature, and similarly substi-

tuting an equation with an average term and a sinus-
oidal term for the wall temperature. That is,

Tb�t� � Tb0 � Tbq sin�o qt� and

Tw�t� � Tw0 � Twq sin�o qt�
�34�

Thus, Eq. (1) gives

Tg�t� � Tb0 � Tbq sin�o qt� � mcv

hA
o qTbq

cos�o qt� ÿ es
h
��Tb0 � Tbq

sin�o qt��4 ÿ �Tw0 � Twq sin�o qt��4� �35�

6. Results

The three analytical results derived in the previous
section, two for the lumped mass and one for the

cylindrical body, show the general method of solution
for obtaining the frequency response of convectively
and radiatively heated bodies. In this section some

sample results are presented to show the general val-
idity of the analytical method presented above in
Sections 3 and 4. It is also shown how the discrep-
ancies existing in the literature can be explained with

the help of the results obtained from the proposed ana-
lytical model.

6.1. Analytical results

The response characteristics given by the analytical
results for the lumped mass case with constant wall
temperature are plotted in Fig. 2(a). Values typical of

an exposed thermocouple bead in a gas turbine were
chosen.
Bead properties: diameter=2 mm, density=16,600

kg/m3, emissivity=1, heat capacity=162 J/kg K, bead
temperature amplitude (Tbq=0.0001 K).
Flow properties: velocity=10 m/s, pressure=20 atm,

heat transfer coe�cient=1000 W/m2 K.

Three average body temperatures were chosen to il-
lustrate the increasing e�ects of radiation. At a low
temperature Tb0=300 K there is hardly any e�ect of

radiation. In fact, the asymptotically low frequency re-
sponse is 0.99391 and has been attenuated by less than
one percent. At Tb0=1000 K the asymptotically low

frequency response is 0.81513, amounting to a 19%
loss. At a still higher temperature Tb0=1600 K,
asymptotically low frequency response is 0.51841 with

a loss of 48%. Therefore, it is apparent that above a
certain break frequency radiative heat transfer no
longer plays any signi®cant role in attenuating the re-
sponse.

6.2. Comparison of numerical and analytical results

The assumption that the wall temperature and the
body temperature ¯uctuations are small relative to
their respective averages is best examined by com-

paring the analytical results with the numerical results
obtained for the same input conditions. The numerical
and analytical results are nearly in perfect agreement

M.A. Hadley et al. / Int. J. Heat Mass Transfer 42 (1999) 4287±42974294



(see Fig. 2(a)) when the body's surface temperature

varies by 0.0001 K. At low body temperatures (i.e.

Tb0=300 K) the e�ect of radiative heat transfer on the

response is so small that any assumption regarding

radiative heat transfer becomes of no consequence.

Also, above the break frequency where the time re-

sponse is dominated by thermal lag, the e�ects of radi-

ation are so small that the assumptions regarding it
are trivial. The e�ect of assuming that the body's tem-

perature variation is small with respect to its average
temperature is shown in Fig. 2(b). The input values
chosen are kept the same as mentioned earlier with the

exception that while Tb0 is kept at 1600 K, Tbq is
allowed to vary. A 4% di�erence is noted between the
theoretical and numerical results for asymptotically

low frequency response at Tbq=100 K, and a 13%
di�erence when Tbq=300 K. If one were to accept a
10% di�erence between the theoretical and numerical

result as valid, it can be said that the analytical result
is valid when the amplitude of the temperature vari-
ation is less than 10% of the average surface tempera-
ture of the body (i.e. when Tbq/Tb0 < 0.1).

6.3. Normalization of the frequency response

The e�ects of normalizing the frequency response, as
given by Eq. (18), are shown in Fig. 2(c). The e�ect of
normalizing the response to the response at asymptoti-

cally low frequencies is to have no e�ect of radiation
at asymptotically low frequencies. Yet, beyond the
break frequency, normalizing the response has the

e�ect of decreasing the amount of attenuation with
higher temperature. This is the same result as if it was
decided to increase the convective heat transfer coef-

®cient by using a linearized radiative±convective heat
transfer coe�cient. Thus, numerical results which are
normalized and compared to theoretical results where
a radiative±convective heat transfer result is used, will

agree closely.

6.4. Explanation of experimental results and

disagreements in the literature

As stated earlier, there is a considerable di�erence in

the literature regarding the e�ects of radiative heat
transfer. Some authors maintain that there is no e�ect,
yet others show a T 3 e�ect on the time constant.

Elmore et al. [8], using a ®nite di�erence technique,
turned the e�ect of radiation `on and o�' by setting
the emissivity to either 1 or 0, respectively. By com-
paring their results at three di�erent frequencies, they

concluded that there is no e�ect of radiation on the
thermal time constant. However, Sbaibi et al. [9]
showed experimental results concluding that the radi-

ative heat transfer does a�ect the time constant of ®ne
wire thermocouples.
The theoretical results presented by Sbaibi et al. [9]

and Malcorps [10] disagree with each other. However,
their theoretical results agreed very closely with their
own experimental results. The results presented in this

Fig. 2. (a) Temperature response of a lumped mass to a vary-

ing gas temperature vs frequency with constant wall tempera-

ture. (b) Temperature response of a lumped mass to a varying

gas temperature at asymptotically low frequencies vs gas tem-

perature amplitude. (c) Normalized temperature response of a

lumped mass to a varying gas temperature vs frequency.
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paper agree perfectly with the theoretical results of
Malcorps. Also, when normalized, it would agree per-
fectly with the theoretical results of Sbaibi et al. [9].

Thus the results presented in this paper compare very
well with both kinds of reporting in the literature. The
disagreement between the ®ndings of di�erent authors

in the literature may be explained as follows. Some
authors normalized their high frequency results by
their low frequency results and concluded that radi-

ation does have an e�ect but there is no e�ect of radi-
ation on the thermal time constant of the bodies. They
erroneously concluded this because the e�ect of radi-

ative heat transfer at low frequencies becomes included
into their high frequency results by the normalization,
while the e�ect of radiation on the low frequency
results is reduced by the normalization. Elmore et al.

[8] who performed a numerical study, while correctly
concluding that there was no e�ect of radiation on the
time constant, did not show results for asymptotically

low frequencies and hence may have missed the e�ect
of radiative heat transfer. Malcorps [11] did correctly
show the e�ect of radiation and did show experimental

results that were in agreement with his theoretical
results.

6.5. E�ect of time dependent radiation from the walls

Examination of Eqs. (25) and (26) shows that
depending on the value of the phase di�erence between
the object and the walls, the heat transfer can either

enhance the response at asymptotically low frequencies
if they are in phase, or decrease the probe response
time to changes in convective heat transfer if they are

out of phase. Therefore, radiation from the walls can
interfere with the measurement of the gas temperature
¯uctuations. In fact, if the net radiative heat transfer

from the object to the walls is always equivalent to the
net radiative heat transfer from the walls to the object,
that is T 3

b0Tbq=T 3
w0Twq, and the ¯uctuations are in

phase (awq=abq), radiation has no e�ect on the re-
sponse.

6.6. Relative e�ect of convection versus radiation in
practical systems

By examination of Eq. (16) it can be seen that the
relative e�ects of convection and radiation are con-
tained in the term

Tbq

Tgq

����
qo 040

� 1

1� 4esT 3
b0

h

Malcorps was the ®rst to notice this e�ect of radi-
ation on the low frequency response. He termed the
low frequency response as the `responsivity' of the

sensor. It is interesting to note that his research was
in the area of measuring heat ¯ux on the ground
from solar radiation and even at those conditions,
that is at atmospheric temperatures, responsivity was

a�ected by radiation. If the temperature of the object
is high or the convective heat transfer coe�cient is
low, then the e�ect of radiation is signi®cant. On the

other hand if the convective heat transfer coe�cient
is very high and the temperature very low then radia-
tive heat transfer has little e�ect on the frequency re-

sponse.
As already discussed, in the case of a gas turbine

combustor it was found that, in the exit plane of the
combustor, the e�ect of radiative heat transfer is to

attenuate the low frequency response by a factor of
0.52. For a weather monitoring station, with typical
values [14] of velocity=10 m/s, temperature=288 K,

pressure=1 atm and heat transfer coe�cient=200 W/
m2 L, the low frequency temperature response of a
thermocouple junction is attenuated by a factor of

0.98; nearly no e�ect as might be expected. For a
small scale industrial burner [15] with velocity=40 m/
s, temperature=1650 K, pressure=1 atm and heat

Table 1

Comparison of the low frequency response (responsivity) for some practical conditions

Case Bead properties Flow properties Responsivity

Mean temperature

(K)

Diameter

(mm)

Heat capacity

(J/kg K)

Velocity

(m/s)

Pressure

(atm)

Heat transfer coe�cient

(W/m2 K)

Industrial intercooled air

compressor exit

300 2 162 10 20 1000 0.994

Gas turbine power

system compressor exit

1000 2 162 10 20 1000 0.815

Gas turbine power

system turbine inlet

1600 2 162 10 20 1000 0.518

Weather station 288 2 162 10 1 200 0.980

Small scale burner 1650 2 162 40 1 400 0.460
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transfer coe�cient=400 W/m2 K, a low frequency re-
sponse of 0.46 is obtained.

Table 1 presents a summary of the practical cases
discussed as above.
Thus it can be seen that at higher temperatures, say

greater than 800 K, one should always account for the
e�ect of radiation. In practice this is ordinarily true
because the e�ect of radiation goes as T 3 and quickly

makes itself apparent except for the cases of exception-
ally high convective heat transfer.

7. Conclusions

Based on the results presented and discussed above,

the following conclusions can be drawn.

1. Radiative heat transfer from objects does not a�ect
frequency response past the break frequency; it

attenuates the frequency response only for asymp-
totically low frequencies.

2. If the walls surrounding the object are expected to

oscillate with a similar amplitude, phase and aver-
age temperature, the net radiative exchange between
the walls and the object results in no e�ect of radi-
ation on the frequency response.

3. For practical problems, to account for the e�ects
of radiation it may be advisable to average over a
suitably short time period (i.e. on the order of the

break frequency), and ignore the e�ects of radi-
ation altogether if the walls are exposed to the
same ¯uctuating gas temperatures as the object.

However, if there are no walls or the wall tempera-
ture is known to be constant (for example, ®lm
cooled walls around a gas turbine burner nozzle)

relations similar to Eqs. (16) and (17) may be
used.

4. The di�erences in the literature can best be
explained by two assumptions often used. The ®rst

assumption arises from the desire to linearize the
boundary condition by using an approximate com-
bined convective and radiative heat transfer coef-

®cient. This results in a frequency response of
unity at asymptotically low frequencies and there-
fore authors may erroneously conclude that there

is an increase in the response time as radiative
heat transfer becomes more dominant. The second
assumption in the literature, that can explain the
confusion, is the desire to normalize the experimen-

tally or numerically determined frequency response
to be unity at asymptotically low frequencies. This
would explain why numerically derived charts,

which should be exact, show the erroneous e�ect

of radiation increasing the response at higher fre-
quencies. Non-normalization of the result shows

why Elmore et al. [8] concluded that radiation had
no e�ect on the frequency response above the fre-
quency where thermal lag dominates. It would

have been of interest if Elmore et al. had shown
any result for asymptotically low frequencies where
e�ect of radiation would be apparent.
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